21 research outputs found

    Energy Efficient Relay-Assisted Cellular Network Model using Base Station Switching

    Get PDF
    Cellular network planning strategies have tended to focus on peak traffic scenarios rather than energy efficiency. By exploiting the dynamic nature of traffic load profiles, the prospect for greener communications in cellular access networks is evolving. For example, powering down base stations (BS) and applying cell zooming can significantly reduce energy consumption, with the overriding design priority still being to uphold a minimum quality of service (QoS). Switching off cells completely can lead to both coverage holes and performance degradation in terms of increased outage probability, greater transmit power dissipation in the up and downlinks, and complex interference management, even at low traffic loads. In this paper, a cellular network model is presented where certain BS rather than being turned off, are switched to low-powered relay stations (RS) during zero-to-medium traffic periods. Neighbouring BS still retain all the baseband signal processing and transmit signals to corresponding RS via backhaul connections, under the assumption that the RS covers the whole cell. Experimental results demonstrate the efficacy of this new BS-RS Switching technique from both an energy saving and QoS perspective, in the up and downlinks

    Dynamic spectrum access based on cognitive radio within cellular networks

    Get PDF
    Overlay transmissions in cognitive radio (CR) permit a secondary system to use spectrum concomitantly with a primary system, though adopting this spectrum sharing strategy presents a number of challenges, such as the requirement for a secondary user to have a priori knowledge as side information about the primary user. In this paper, a cognitive cellular network is proposed which uses an overlay approach to dynamically share its radio resource by incorporating cognition, leading to enhanced cell capacity. To compensate for the interference caused by the overlay, cognitive base stations use robust dirty-paper coding in combination with variable transmission powers, which are set depending upon the location of the mobile stations. A detailed performance analysis is presented to corroborate the improved spectrum utilization achieved using this technique

    Traffic-and-interference aware base station switching for green cellular networks

    Get PDF
    Base station (BS) sleeping in cellular networks has emerged as a promising solution for more energy efficient communications, concomitant with lowering the network carbon footprint. Switching off specific BS entirely however, can lead to coverage holes and severe performance degradation. To avoid coverage holes, the transmit power of neighbouring BS must be commensurately increased, which can cause higher interference to other cell users. Recently a BS-RS (relay station) switching model has been proposed where the BS changes operating mode to a RS during off-peak periods rather than being completely turned off. This paper presents a traffic-aware and traffic-and-interference aware switching strategy for both the BS sleeping and BS-RS switching paradigms, which dynamically establishes the conditions for a BS to alter its working mode. The switching is based upon a dynamic traffic threshold allied with the received BS interference level. Analysis corroborates both new algorithms significantly improve network energy efficiency, while upholding the requisite quality of service provision

    Fuzzy-Logic Based Call Admission Control in 5G Cloud Radio Access Networks with Pre-emption

    Get PDF
    YesFifth generation (5G) cellular networks will be comprised of millions of connected devices like wearable devices, Androids, iPhones, tablets and the Internet of Things (IoT) with a plethora of applications generating requests to the network. The 5G cellular networks need to cope with such sky-rocketing tra c requests from these devices to avoid network congestion. As such, cloud radio access networks (C-RAN) has been considered as a paradigm shift for 5G in which requests from mobile devices are processed in the cloud with shared baseband processing. Despite call admission control (CAC) being one of radio resource management techniques to avoid the network congestion, it has recently been overlooked by the community. The CAC technique in 5G C-RAN has a direct impact on the quality of service (QoS) for individual connections and overall system e ciency. In this paper, a novel Fuzzy-Logic based CAC scheme with pre-emption in C-RAN is proposed. In this scheme, cloud bursting technique is proposed to be used during congestion, where some delay tolerant low-priority connections are pre-empted and outsourced to a public cloud with a penalty charge. Simulation results show that the proposed scheme has low blocking probability below 5%, high throughput, low energy consumption and up to 95% of return on revenue

    Active Inference for Sum Rate Maximization in UAV-Assisted Cognitive NOMA Networks

    Full text link
    Given the surge in wireless data traffic driven by the emerging Internet of Things (IoT), unmanned aerial vehicles (UAVs), cognitive radio (CR), and non-orthogonal multiple access (NOMA) have been recognized as promising techniques to overcome massive connectivity issues. As a result, there is an increasing need to intelligently improve the channel capacity of future wireless networks. Motivated by active inference from cognitive neuroscience, this paper investigates joint subchannel and power allocation for an uplink UAV-assisted cognitive NOMA network. Maximizing the sum rate is often a highly challenging optimization problem due to dynamic network conditions and power constraints. To address this challenge, we propose an active inference-based algorithm. We transform the sum rate maximization problem into abnormality minimization by utilizing a generalized state-space model to characterize the time-changing network environment. The problem is then solved using an Active Generalized Dynamic Bayesian Network (Active-GDBN). The proposed framework consists of an offline perception stage, in which a UAV employs a hierarchical GDBN structure to learn an optimal generative model of discrete subchannels and continuous power allocation. In the online active inference stage, the UAV dynamically selects discrete subchannels and continuous power to maximize the sum rate of secondary users. By leveraging the errors in each episode, the UAV can adapt its resource allocation policies and belief updating to improve its performance over time. Simulation results demonstrate the effectiveness of our proposed algorithm in terms of cumulative sum rate compared to benchmark schemes.Comment: This paper has been accepted for the 2023 IEEE 9th World Forum on Internet of Things (IEEE WFIoT2023
    corecore